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Abstract— Image indexing refers to describing the visual
multimedia content of a medium, using high level textual
information or/and low level descriptors. In most cases, images
and videos are associated with noisy and incomplete user-
supplied textual annotations, possibly due to omission or the
excessive cost associated with the metadata creation. In such
cases, Content Based Image Retrieval (CBIR) approaches are
adopted and low level image features are employed for indexing
and retrieval. We employ the Colour and Edge Directivity
Descriptor (CEDD), which incorporates both colour and texture
information in a compact representation and reassess it for
parallel execution, utilizing the multicore power provided by
General Purpose Graphic Processing Units (GPGPUs). Exper-
iments conducted on four different combinations of GPU-CPU
technologies revealed an impressive gained acceleration when
using a GPU, which was up to 22 times faster compared to the
respective CPU implementation, while real-time indexing was
achieved for all tested GPU models.

I. INTRODUCTION

The area of Content Based Image Retrieval (CBIR) has
seen a steady train of improvements in performance over the
last decade [1]. The main focus of any CBIR method is to
capture the rich information that images hold and vectorize
it building its descriptor, so as to allow fast indexing and
meaningful retrieval for the user.

The wide spread of affordable image and video capturing
devices led to a rapid growth of multimedia databases in
areas such as private life, journalism, medicine and tourist
attraction, to name a few. Thus, in real life scenarios, de-
scription methods are not evaluated solely by their achieved
performance but by their efficiency, as well.

Accelerating the descriptor-extraction procedure to the
point where low level features can be described and incorpo-
rated in a file’s header as it is captured and becomes part of a
collection, is a matter of great importance. For instance, large
image repositories such as Flickr, facebook and Dropbox,
where millions of images are uploaded daily, will be able to
index the images as they become part of their databases.
The contribution of an implementation that achieves fast
extraction of a descriptor is more evident when dealing
with videos. According to 2014 YouTube’s statistics1, 100
hours of video are uploaded every minute. Automatic video
annotation and summarization could be achieved through a
descriptor extraction implementation that would allow real-
time indexing of the frames.

Acknowledging the restrictions on computational re-
sources that apply due to the massive amount of data involved
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in CBIR, recent methods are focused on producing compact
vector representations. However, despite all the algorithmic
efforts towards this direction, it is clear that useful accelera-
tion without performance degradation can only be achieved
through parallel processing.

Graphics Processing Units (GPUs) were first introduced to
handle graphics primitives. However, the rapid evolution of
the NVIDIA Compute Unified Device Architecture (CUDA)
API [2], gave access to researchers from many varying fields,
to the powerful parallel architecture of GPUs. Since GPUs
are primarily employed for graphics, their configuration is
ideal for parallelizing image processing algorithms.

Thus, multiple General-Purpose GPU (GP-GPU) imple-
mentations of existing image processing, indexing and cate-
gorization methods, have been proposed in recent literature.
All report important acceleration and improved efficiency
achieved by passing computations to the GPU, carefully
following the architectural principles dictated by the GPU
model.

In [3] the authors propose a compact histogram representa-
tion which applies replication and padding for optimizing the
voting process in shared memory. They manage to minimize
position conflicts by forcing adjacent threads to vote for dif-
ferent sub-histograms and propose the use of padding for re-
ducing the amount of bank conflicts. A solution for building
mosaic images of printed documents from frames selected
from VGA resolution video captured from a mobile device,
is presented in [4]. They utilize the device’s GPU to perform
the most demanding computations, concluding that the deep
understanding of the data and the possible parallelizations
becomes the crucial step for successful designs. A GPU
implementation of Local Binary Pattern feature extraction is
attempted in [5]. Results show that parallelizing a method
that by design consists of processes that can be handled
independently, ensures great achieved efficiency even when
employing older graphics cards. However, in [6] authors
attempt the same implementation on a mobile device’s GPU
and conclude that its parallelization power is insufficient.
Taking a more general outlook, authors in [7] explored
the design and implementation issues of image processing
algorithms on GPUs. Selecting four major domains 3D shape
reconstruction, feature extraction, image compression, and
computational photography, they try to employ metrics that
will allow the prediction of the effectiveness of a given
image processing problem for the parallel implementation,
and observed that speed-up varies extensively depending on
the characteristics of each algorithm.



Studying the related literature, it is clear that GPUs pro-
vide the much needed parallel computing power for feature
extraction and image description methods. Both for personal
computer applications or if used to make smart-phones
smarter [8] by allowing applications to compute complex
computations efficiently, GPGPUs consist an attractive solu-
tion. To produce desired results, in terms of efficiency and
acceleration, the method selected to be parallelized needs to
consist of independent procedures, while the implementation
strategy must be carefully selected to fit the specifics of the
GPU and the data involved.

In this paper, we focus on real-time image indexing for
CBIR tasks. A real-time image processing system requires
at least 25 frames per second [9]. In the same direction, we
define as real-time indexing the ability of a system to extract
a descriptor vector during capturing a VGA frame stream of
25fps. We employ the Color and Edge Directivity Descriptor
(CEDD) [10] which incorporates both color and texture
information. CEDD is a compact descriptor that achieves
successful trade-off between effectiveness and efficiency and
has been widely used in recent literature [11], [12], [13],
[14]. Moreover, it divides the indexing problem into many
identical and independent sub-problems making it ideal for
parallelization. Taking into account the principles and the
constrains of the CUDA architecture, we reassess and design
a parallel equivalent which is tested on four different com-
putational setups with varying CPU and GPU technologies.

II. CEDD - COLOR AND EDGE DIRECTIVITY
DESCRIPTOR

This section provides a brief presentation of the structural
elements of the Color and Edge Directivity Descriptor. For
a more detailed description, kindly refer to [10], [15].

CEDD is a global feature image descriptor2, designed for
CBIR tasks, that achieves good performance with relatively
low size and storage requirements. CEDD divides an image
of any size into 1600 rectangular image areas. Those Image-
Blocks are then handled independently to extract their colour
and texture information. Each Image-Block is represented
by a quantized vector that captures its colour and texture
attributes. When all 1600 Image-Block vectors have been
calculated, they are combined (fused) to form a single
Image vector. The final CEED descriptor is produced by
normalizing and quantizing into 8 predefined levels the
aforementioned Image vector. The following subsections
provide a closer look at the Colour Extraction and the Texture
Extraction Units.

A. Colour Extraction Unit

As depicted in Figure 1(a), each Image-Block enters the
Colour Unit after its RGB values are converted into the HSV
colour space.

Then, a two-staged fuzzy system is employed to pro-
duce a fuzzy linking histogram. Linking is defined as the
combination of more than one histograms to a single one

2Recently, a local features’ version of the CEDD descriptor was proposed
in [16].

Fig. 1. (a) CEDD Implementation Flowchart, (b) Descriptor’s Structure[10].

Fig. 2. Membership Functions of H (a) , S (b) and V (c) for the first stage
of the fuzzy system [10].

[10]. The first stage of the fuzzy system has the three mean
HSV channels of an Image-Block as inputs, and forms a 10-
bins histogram output. The three inputs of the fuzzy system
are described as follows: Hue (H) is divided into 8 fuzzy
areas, Saturation (S) is divided into 2 fuzzy regions while
the channel Value (V) is divided into 3 areas (kindly refer
to Figure 2). The output of the fuzzy system is enabled by
a set of 20 rules and returns a crisp value ranging from 0
to 1 (TSK like fuzzy system) to produce the 10-bins first-
stage histogram. The first three bins represent Black, Grey
and White, respectively, while the rest seven bins represent
a preset colour each.

The second-stage fuzzy linking system (TSK) is respon-
sible for adding the brightness value to the seven colours
(Black, Grey and White are not computed). Again the S and
V mean values of an Image-Block become fuzzy inputs, as
illustrated in Figure 3. The output is a 3 bin histogram of
crisp values, indicating if the colour will be characterized as
light, normal or dark hued.

The two outputs (first and second stage histograms) are



Fig. 3. Membership Functions for the S (a) and V (b) channels used in
the second stage of the fuzzy system [10].

combined and the final 24-bin colour histogram is produced.
Each bin represents a colour as follows: (0) Black, (1) Grey,
(2) White, (3) Dark Red, (4) Red, (5) Light Red, (6) Dark
Orange, (7) Orange, (8) Light Orange, (9) Dark Yellow, (10)
Yellow, (11) Light Yellow, (12) Dark Green, (13) Green,
(14) Light Green, (15) Dark Cyan, (16) Cyan, (17) Light
Cyan, (18) Dark Blue, (19) Blue, (20) Light Blue, (21) Dark
Magenta, (22) Magenta, (23) Light Magenta.

B. Texture Extraction Unit

In parallel with the Colour Unit, Image-Blocks enter the
Texture Unit, after being converted to the YIQ colour space.
For the extraction of the texture information the method
employs the five digital filters proposed by the MPEG-7
Edge Histogram Descriptor-EHD [17] which represent five
broadly grouped edge types: vertical, horizontal, 45 diagonal,
135 diagonal, and isotropic (Figure 4(a)), along with an
additional Non-Edge filter. In order to employ the filters,
each Image-Block must be subdivided into four Sub-Blocks.
The value representing each Sub-Block is the mean value of
the luminosity (Y) of the pixels consisting the Sub-Block.

The digital filters are applied and the obtained responses
became inputs to the fuzzy mapping scheme, illustrated in
Figure 4(b). In its essence, this mapping system is responsi-
ble for indicating which kinds of edges are present for every
Image-Block. Please note that more than one edge types can
be simultaneously present.

The normalized maximum responses (edge magnitudes)
from the applied filters per Image-Block, are placed in the
heuristic pentagon diagram (Figure 4(b)). Each value is
placed along the line that pertains to the filter it emerged
from. If that value is greater than the corresponding line’s
threshold, the Image-Block is classified in the respective type
of edge. If none of the five thresholds are met the Image-
Block is categorized as Non-Edge.

The Texture Unit produces a 6-bin vector output for each
Image-Block. Every bin represents one of the five employed
textures, while the first bin represents the Non-Edge case.
When an edge type was found present in an Image-Block
the corresponding bin is marked with ”1”. Otherwise it is
marked as ”0”, producing the binary Image-Block texture
vector.

C. Producing the CEDD descriptor

When the 24-bins colour histogram and the 6-bins texture
vector have been calculated for an Image-Block, the two are
combined and a 144-bins vector for every Image-Block is
generated as follows: the bins are divided to six regions (that

represent a different texture) of 24-bins each. According to
the Image-Block’s texture vector, and for those of its bins
that were marked as ”1”, the respective region in the 144-
bins vector is filled with the 24-bins colour histogram that
was calculated for the Image-Block. Then, all Image-Block
descriptors are added to form the image descriptor. This
vector is normalized and quantized into 8 predefined levels.
On completion the image’s CEDD descriptor (Figure 1(b))
has been formed and will represent the visual content of the
image in a compact and distinct fashion.

Fig. 4. (a) Filter Coefficients for Edge Detection, (b) Edge Type Diagram
(Heuristic Pentagon Diagram) [10].

III. CUDA ARCHITECTURE

In CUDA terms, the GPU is called device and the CPU
that calls the CUDA functions is the host. The GPU archi-
tecture contains a large number of computing cores which
can handle a large number of operations, simultaneously.
The GPU is divided in a number of multicore processors
named multiprocessors (MPs). Each multiprocessor is a set
of processors with a single instruction multiple data (SIMD)
architecture. Due to the SIMD nature of CUDA, at one
time the threads must perform identical operations. [7],
[18]. Otherwise, the computations will be partially serialized
because different instructions must be executed in different
clock cycles, leaving groups of threads idle [19].

A CUDA kernel function is a set of instructions that the
device’s threads will execute in parallel. The threads are
organized in a two-level hierarchy, Thread Block and Grid.
Every Grid is a set of Thread Blocks and every Thread Block
is a set of threads. The maximum number of Thread Blocks
and threads per Block that can be executed in parallel varies,
and is defined by the GPU model.

A GPU also has an efficient memory architecture divided
in global and local memories. Registers are local memory
spaces assigned per processor. The threads belonging to
the same Thread Block can share data through the Shared
Memory. Threads from different Thread Blocks coordinate
only through the Global Memory. a large and long-latency
memory which has read/write operations. Accessing the
Global Memory space is much slower, typically two orders
of magnitude slower than floating point multiplication and
addition [20], [19]. Global Memory read operations from
threads whose id follows the memory alignment guidelines
can be coalesced, leading to faster execution [2].



Generally, when a method demands the usage of the same
data multiple times, the efficient strategy is to copy the data
to Registers and access it from there, as long as this is
possible. An informative summarization of the properties of
the different types of memories and the suitability of CUDA
can be found in [21].

IV. CUDA IMPLEMENTATION

Indexing images, whether dealing with an image collec-
tion or frames from a video stream, is a computationally
demanding and time consuming process. GPUs are low cost,
powerful processors, available on every personal computer
that when utilized to handle computations can significantly
improve the efficiency of a method. However, in order to
benefit from the parallel computational power that they can
offer, one needs to carefully select the appropriate method
and design around the architectural principles of GPUs. In
this section we propose and design a parallel equivalent
of the original CEDD implementation. CEDD was selected
because it has a parallel structure by design since it divides
the indexing problem into many smaller independent and
identical processes.

Figure 5 depicts the implementation’s flowchart. From
left to right the implementation consists of three successive
stages: The Average RGB values are calculated in parallel for
every Image Sub-Block, the colour and texture vectors per
Image-Block are extracted and combined to form the Image-
Blocks’ descriptors, the descriptors are added to produce a
single vector and normalized and quantized to form the final
CEDD descriptor of the image.

1) Preparing the data to be forwarded to the GPU: Due
to the absence of a direct communication channel between
the hard drive (where the images are stored) and the GPU,
the CPU is activated to read the images. Designing for the
GPU implementation leads us early on to investigate about
the preferred input data manipulation strategy. We explored
two different approaches. First we forwarded the data in the
format they were originally stored and read by the CPU.
Then, we performed additional rearrangement of the data so
that values belonging to an Image Sub-Block would be stored
in neighbouring memory slots per RGB channel. Ideally,
the accesses to the Global Memory that the threads perform
should be coalesced. Thus, data that will be accessed by the
same Thread Block should be sequential.

Reading the images takes up on average 62% of the
total execution time. When further engaging the CPU to
rearrange the data, and even though the GPU part of the
implementation achieved almost a 10% speed-up, the total
CPU execution time (reading and rearranging the data) sig-
nificantly impacted the overall execution time and therefore
data rearrangement was abandoned.

2) Calculating the Average RGB Values: CEDD divides
the image into 1600 Image-Blocks. The smallest structural
unit, however, is defined by the texture extraction procedure
which demands each Image-Block to be further divided into
four equally sized Sub-Blocks. Thus, we must calculate the
average R, G and B values of 4 × 1600 = 6400 blocks

of pixels. For this to be done 6400 × 3 Thread Blocks are
activated.

To achieve maximum parallelization each Thread Block
should contain a number of threads equal to the number of
pixels in the Sub-Block. The size of a Sub-Block is directly
related to the actual image size. As described before, the
number of threads in each block is limited. For instance in
the weakest GPU that we tested, this limit is 512 threads per
block. In this case, if an Image Sub-Block is formed by more
than 512 pixels, their processing becomes partly serialized,
delaying the total execution time.

The calculation of the average RGB values of an Image
Sub-Block is essentially a summation problem. Summation is
by default a not fully-parallelizable procedure. The efficiency
of the procedure depends mainly on the employed technique,
but can benefit from input data organized in a suitable
manner, a scenario that we explored but found unfit for our
implementation. A popular technique that semi-parallelizes
the summation problem follows the Reduction process [22],
[23] architecture. It is a tree-based approach where every
involved thread sums two values. The outcome becomes the
input data of the next step and the process continues until
only two values are left for one thread to sum.

In our design we assign a device Thread Block for
every RGB channel of an Image Sub-Block. This one-to-
one assignment leads to a maximum image size of about
6.5 Mega-Pixels. This upper limit is defined by our weakest
GPU of 512 threads per Thread Block. Since the Reduction
process assigns one thread for the summation of two values,
the maximum Image Sub-Block size can be up to 1024
pixels. The maximum image size can be further increased if
more than one Thread Blocks are assigned per Image Sub-
Block. If so, the output of every Thread Block responsible
for the same Sub-Block must be summed, as well. In any
case, the optimum exploitation of the resources during a
summation process is achieved when all the available parallel
threads per clock cycle are engaged in the process. This can
be ensured when all provided Thread Blocks are employed
and utilized to their maximum threading capacity.

In our method, the number of values to be summed is
defined by the size of the Image Sub-Block. Thus, when the
size of the input image is small, the utilization is not optimum
because many available threads per Block remain idle. This is
evident through our experimental results presented in the next
section. By the end of the summation process the method can
be divided into 1600 independent problems.

3) Color Extraction Unit - TSK Fuzzy System Implemen-
tation: Every four Sub-Blocks that form an Image Block
enter the Texture and the Color Units. We will begin by
describing the Color Extraction Unit (Figure 1(a)). The
previously calculated average RGB values per Sub-Block are
used to find the Image Block’s average red, green and blue
values. Those values are then converted into the HSV (Hue,
Saturation, Value) colour space.

The S and V components become inputs to the Fuzzy
Brightness Indicator while in parallel all three components
(HSV) enter the 10-bin Fuzzy Histogram. Both fuzzy sys-



Fig. 5. GPU Implementation Flowchart.

tems share the same architectural principles in the GPU
implementation. We will proceed by describing our Parallel
version of a Participation Identifier (PPI).

The PPI technique that we employ ensures that the
requested output will be produced in one time-step. The
task in hand is to indicate whether a value belongs to
a specific sub-region of a range of values. We assume
that a set Sk, k ∈ [0, n] may be classified into Vi, i ∈
[0, l], l, n ∈ N regions. We also assume that each Sk belongs
to Vi. Using the straightforward approach, for each Sk,
one up to l number of participation checks are required
so as to form the outcome. In case of PPI, each Sk is
compared in parallel with all Vi so as to determine the
participation of Sk in one or more of them. PPI ensures
that regardless of the sub-region that Sk will be found to
participate, always one time-step will be needed. For this to
be achieved we engage the maximum needed resources i.e.
number of thread = number of sub-regions.

This approach can be adopted by a variety of clustering
applications, especially when many sub-regions/clusters are
involved. Due to the SIMD architecture, at one time, threads
must perform identical operations. PPI successfully adapts
to this principle. In every time-step the output is produced
and a new set of identical operations can take place in the
next time-step.

We applied the PPI to the Fuzzy systems implementation.
One thread per membership function region is activated.
Given that the 10-bin Fuzzy Histogram is calculated using
three inputs (H, S and V), containing 8, 2 and 3 membership
functions respectively, 8 × 2 × 3 = 48 combinations per
Image-Block are tested in parallel by a respective number of
threads. Overall, in a single time-step, 1600×48 threads are
activated. Likewise, for the 24-bin Fuzzy Histogram (Fuzzy
Brightness Indicator), 4 threads are employed simultaneously
per Image-Block (i.e 1600× 4 for the whole image).

When both outputs from the Fuzzy Brightness Indicator
and the 10-bin Fuzzy Histogram are produced, they are

combined to form the [1×24] long Colour Vector. The
following pseudo code describes the combination process.

Data: x ∈ [0, 7] ∪N , y ∈ [0, 2] ∪N , z=0
for 24 threads with threadIDx.x/y/z do

if threadIDx.x==0 then
24Bin Color Vector[threadIDx.x × 3 + threadIDx.y]=
10Bin Color Vector[threadIDx.y]

else
24Bin Color Vector[threadIDx.x × 3 + threadIDx.y]=
10Bin Color Vector[threadIDx.x +2] ×
3Bin Brightness Vector[threadIDx.y]

end
end

Algorithm 1: The Color Combination Process.

According to CEDD, the first three bins (Black, Grey,
White) from the 10-bin Histogram Unit are forwarded un-
changed to become the first three components of the 24-
bins Colour Vector. As for the remaining bins, every colour
bin is multiplied with all three brightness bins to produce
a three-shaded colour representation. In CUDA, we enable
24 threads to process as follows: 3 threads are responsible
for transferring the first three 10-bin values, and another set
of three threads per colour bin (i.e. 3 threads for every one
of the remaining seven colours) is enabled to execute the
multiplication of the brightness values with the colour. All
computations are implemented in parallel and the 24-bins
Colour Vector is formed at once.

4) Texture Information Extraction Unit: As in the Colour
Unit, the inputs of the Texture Extraction Unit are the
four Image Sub-Blocks that comprise an Image Block. We
will continue describing the implementation of the Texture
Extraction Unit for one Image Block (4 Image Sub-Blocks).
All 1600 Image Blocks that compose the input image are
processed in parallel by identical kernels.

The RGB average values of each Sub-Block are converted
into the YIQ colour space. All four extracted Y (Luminance)
values become a [1 × 4] vector used for the application of



the texture filters. A single thread is enabled per filter. Thus,
a total of 5 threads are executed simultaneously to calculate
the response of the five different texture filters. The output
enters the Fuzzy Mapping system.

This system is responsible for identifying which kind
of texture is located in an Image Block. First, we locate
the highest scoring filter. If a predefined threshold (hereby
refereed to as T ) is not met by the highest scoring filter, the
whole Image Block is categorized as Non-Edge and no fur-
ther computations take place. Otherwise, the corresponding
response scores of the five filters are normalized and used to
form the final Texture Vector.

A total of six threads are activated to carry out the
computations. One is the Non-Edge detector, and the rest are
the five filter-threads. The maximum found response value
is stored in the shared device memory, in order for it to
be available for all threads to access. All threads access the
stored value to compare it with T , simultaneously. When T is
not met, the Non-Edge detector thread marks the first element
of the Texture Vector with ”1” while the five filter-threads
mark their corresponding elements as ”0”. In any other case,
the Non-Edge detector is zeroed and the remaining threads
use the maximum value to normalize and compare their value
to confirm if the response is higher than their threshold. If
so, they affect the final Texture Vector by marking as ”1”
their respective element.

5) The CEDD Descriptor: The 24-bins Colour Vector and
the 6-bins Texture Vector are combined to form a 144-bins
vector that carries the colour and texture information of an
Image-Block. The combination procedure of the two input
vectors follows the method described earlier, when the 10-
bin Fuzzy Histogram and the Fuzzy Brightness vectors were
combined. All 144-bins vectors of every Image-Block are
extracted in parallel. 144 threads for every one of the 1600
thread blocks are activated. Every thread is undertaking the
task of multiplying one of the colour’s bins with one of
the texture’s bin and store the result to the new vector.
The produced vectors enter the Normalization Unit. They
are summed into a single vector and normalized. For the
restriction of the descriptor’s length, a 3bits/bin quantization
is used, resulting to 144 × 3 = 432 bits.

The quantization procedure includes the bin-by-bin com-
parison of their normalized value to a group of preset ranged
quantization levels. Eight quantization levels, each one of
them occupying a specific sub-region of values are employed
for every bin area, which leads to a total of 32 levels
for the whole vector. Employing the PPI method, every
bin of the image descriptor is handled by 8 threads, each
one responsible for checking if the bin value belongs to
the corresponding quantization region. Similarly to the TSK
systems implementation, the quantized vector is extracted in
a single time step.

When all bins have been quantized the new vector is the
final CEDD descriptor of the image. Please note that the
CEDD descriptor is produced without any quality degrada-
tion compared to the original CPU implementation.

V. EXPERIMENTAL RESULTS

In order to highlight the efficiency of the proposed models,
we tested the implementation on four different computer
systems that consist of different combinations of CPU and
GPU technologies (kindly refer to Table I) and calculated
the achieved execution time and speed-up. Speed-up refers to
how much a parallel algorithm is faster than the correspond-
ing sequential algorithm and is calculated as: Sp = T1/Tp

where p is number of processors, T1 the is execution time
of the sequential algorithm and Tp is the execution time of
the parallel algorithm with p processors.

Seven different image sizes were employed, ranging from
VGA 640 × 480 pixels up to 2048 × 2048 pixels. Please
note that the execution time depends solely on the width
and the height of the image (frame) to be indexed. As our
implementation is based on parallelizing the procedure of
forming one descriptor and not to create multiple descriptors
in parallel, the achieved speed-up is going to remain the same
regardless of the number of images in the database.

In order to obtain robust results, the indexing challenge
comprised 1000 images of the WANG image database [24],
which we resized to produce the different resolutions, and
was repeated 10 times per setup. The average execution time
of those 10 iterations was used to calculate the Frames/sec
value. In Table II we included the standard deviation (stdv) of
the iterations per image dimension and per setup. The small
stdv values reveal the reliability of our implementation. Table
III summarizes the number of descriptors extracted per image
dimension, per setup and per implementation, evaluated by
the obtained speed-up percentage.

As depicted in Table III, real-time indexing (i.e. at least
25fps for VGA frame sizes) is achieved on all setups.
More specifically, for the first setup the experiments show
that our implementation manages to significantly speed-
up the indexing process (up to 7.5 times). Generally, the
GPU performs better when the device occupancy is high.
The achieved indexing time of the GPU implementation
is very closely related to the available resources that the
technology offers. The utilization strategy of those resources
that we followed during the different stages of our method,
occasionally breaks the expected proportionally behaviour of
the achieved accelerations as image sizes increase.

To take a closer look into how the device occupancy
impacts the speed-up we will focus on the first setup. The
available threads to be activated in parallel are 768, according
to the GPU used in this setup. The possible threads per
Thread Block due to the Reduction method that is employed
for the summation of a Sub-Block’s values, demands the
number of threads to be:

Num of Threads = 2n, where n ∈ N

Num of Threads ≤ Max Threads per Block (1)

Furthermore, the maximum number of Thread Blocks ac-
tivated in parallel is eight. Thus, in order to achieve an
efficient GPU implementation on the first setup the following
formulas must be met:



TABLE I
THE FEATURES OF THE FOUR HARDWARE SETUPS.

Setup1 Setup2 Setup3 Setup4
CPU MODEL Intel Pentium Dual-Core Intel Core i5 Intel Core i5 Intel Core i7
Clock Rate(GHz) / Mem. Bits(bit) / Gflops 2.20 / 32 / 16 3.20 / 64 / 49 2.60 / 64 / 42 4.10 / 64 / 53
GPU MODEL GeForce G 103M GeForce 8400 GS GeForce GT 620M Quadro 4000
CUDA Capability 1.1 1.1 2.1 2
Multiprocessors / Cores per MP 1 / 8 1 / 8 2 / 48 8 / 32
Max Resident Blocks per MP 8 8 8 8
GPU Clock Rate(GHz) 1.60 1.62 1.25 0.95
Memory Clock Rate(Mhz) / Bus Width(bit) 500 / 64 400 / 64 900 / 64 1404 / 256
Max Threads per Block / per MP 512 / 768 512 / 768 1024 / 1536 1024 / 1536
Warp Size / GPU Gflops 32 / 38 32 /43 32 / 240 32 /486.4

Max Threads per MP×MP
Num of Threads

∈ N∗ (2)

A = Max Resident Blocks per MP×MP
At = Num of Threads×A

At ≤ Max Threads per MP×MP (3)

The three last frame sizes meet these criteria and allow the
GPU implementation to perform better (in terms of speed-
up) than frame sizes that are smaller but are not in-line with
the specifics of the GPU model.

TABLE II
THE STANDARD DEVIATION CALCULATED FOR THE 10 EXPERIMENTAL

RUNS, PER IMAGE DIMENSION, PER SETUP.

Setup1 Setup2 Setup3 Setup4
Img Dim Stdv Stdv Stdv Stdv
640x480 0.0097 0.0076 0.0087 0.0066
800x600 0.0102 0.0083 0.0112 0.0068
1024x768 0.0087 0.0075 0.0085 0.0071

1024x1024 0.0095 0.0131 0.0162 0.0081
1600x1200 0.0097 0.0072 0.0079 0.0068
2048x1536 0.0082 0.0076 0.0086 0.0071
2048x2048 0.0092 0.0088 0.0089 0.0078

Setup2 is armed with a GPU similar in resources to setup1
but with a much more advanced CPU. Thus, even though the
number of indexed images per second is slightly greater than
setup1, the total speed-up percentage is less. In setup3 the
GPU has a Computational Capability 2.× with a total of 1536
× 2 available Max threads, 1024 Max threads/block and 16
maximum resident blocks, and as expected performs better.
In this setup real-time indexing of at least 25 frames per
second is achieved for even larger frame sizes of 1024 × 768
pixels. As before, the frame sizes that meet the criteria set
by formulas 1-3 utilize the available resources and therefore
the highest speed-up percentage is reported for the 2048 ×
2048 pixels frame size (7.6 times acceleration).

Setup4 has an impressive total of 8 available MPs which
enables a higher parallel computational power through the
richer resources. This setup allows us to fully show off the
power and the potential of our GPU implementation. The
available resources allow for real-time indexing of all the
tested frame sizes. The achieved speed-up percentage is of
a much greater order of magnitude compared to all other
setups, accelerating the image indexing up to 22.2 times.

Finally, we would like to highlight that the experimental
results confirm the great acceleration that is achieved when
parallelizing the indexing method. Even employing the weak-
est GPU (setup1), the obtained frame rate is always greater
compared to the strongest CPU model (setup4).

VI. CONCLUSION

Efficiently indexing images and videos has become a
matter of great importance with on-line databases growing
rapidly. In this paper we employed the CEDD descriptor,
a lightweight, effective and widely used method which by
design applies for parallelization.

Our implementation strategy was focused on locating the
parallelization bottlenecks and designing the parallel equiva-
lent taking under considerations the possible available com-
putational resources from the user’s end. Real-time indexing
(25 frames/sec for VGA resolution) was achieved by the
proposed GPU implementation in all tested combinations of
CPU-GPU technologies. The potential of our implementation
shone through when involving a powerful GPU, resulting
into a 22 times acceleration when compared to the respective
CPU implementation.
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“Accelerating image recognition on mobile devices using gpgpu,” in
Proceedings of SPIE, vol. 7872, 2011, p. 78720R.



TABLE III
FRAMES PER SECOND AND %SPEED-UP, INDEXED PER IMAGE DIMENSION, PER IMPLEMENTATION AND PER SETUP.

Setup1 Setup2 Setup3 Setup4
Img Dim GPU CPU Speed-up GPU CPU Speed-up GPU CPU Speed-up GPU CPU Speed-up
640x480 25.63 8.86 289.4% 28.54 13.39 213.1% 52.50 11.13 247.1% 288.10 28.58 1008.1%
800x600 19.34 3.67 527.0% 23.28 9.79 237.6% 49.01 9.16 535.2% 244.53 18.97 1289.4%
1024x768 11.83 2.70 438.4% 12.51 5.35 234.1% 29.51 4.24 696.2% 185.75 10.22 1818.2%
1024x1024 9.38 1.46 640.8% 8.63 3.47 248.9% 16.72 2.39 698.7% 102.87 5.60 1838.5%
1600x1200 6.23 1.08 576.2% 5.32 2.22 239.2% 10.97 1.81 606.6% 69.88 4.50 1552.4%
2048x1536 4.53 0.60 755.7% 4.21 1.29 327.1% 6.72 1.04 644.4% 48.42 2.44 1984.1%
2048x2048 2.66 0.44 603.1% 3.63 1.19 305.2% 6.05 0.79 763.2% 40.84 1.84 2221.4%

[7] I. K. Park, N. Singhal, M. H. Lee, S. Cho, and C. W. Kim, “Design
and performance evaluation of image processing algorithms on gpus,”
IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 1, pp. 91–104, 2011.

[8] A. Amanatiadis and S. Chatzichristofis, “How smart are smartphones?:
Bridging the marketing and information technology gap,” IEEE Con-
sumer Electronics Magazine, vol. 3, no. 4, pp. 51–54, 2014.

[9] R. Ureña, C. Morillas, and F. J. Pelayo, “Real-time bio-inspired
contrast enhancement on gpu,” Neurocomputing, vol. 121, pp. 40–52,
2013.

[10] S. Chatzichristofis, K. Zagoris, Y. Boutalis, and N. Papamarkos,
“Accurate image retrieval based on compact composite descriptors
and relevance feedback information,” International Journal of Pattern
Recognition and Artificial Intelligence (IJPRAI), vol. 24, no. 2, pp.
207–244, 2010.

[11] R. H. van Leuken, L. G. Pueyo, X. Olivares, and R. van Zwol, “Visual
diversification of image search results,” in WWW. ACM, 2009, pp.
341–350.

[12] X. Jin, A. C. Gallagher, L. Cao, J. Luo, and J. Han, “The wisdom of
social multimedia: using flickr for prediction and forecast,” in ACM
Multimedia, 2010, pp. 1235–1244.

[13] P. Daras, T. Semertzidis, L. Makris, and M. G. Strintzis, “Similarity
content search in content centric networks,” in ACM Multimedia, 2010,
pp. 775–778.

[14] M. Lux, O. Marques, K. Schoffmann, L. Boszormenyi, and G. Lajtai,
“A novel tool for summarization of arthroscopic videos,” Multimedia
Tools Appl., vol. 46, no. 2-3, pp. 521–544, 2010.

[15] S. Chatzichristofis and Y. Boutalis, “CEDD: Color and edge directivity
descriptor: A compact descriptor for image indexing and retrieval,”
LNCS, Computer Vision Systems, pp. 312–322, 2008.

[16] C. Iakovidou, N. Anagnostopoulos, A. C. Kapoutsis, Y. S. Boutalis,
and S. A. Chatzichristofis, “Searching images with mpeg-7 (& mpeg-
7-like) powered localized descriptors: The simple answer to effective
content based image retrieval,” in CBMI, 2014, pp. 1–6.

[17] B. Manjunath, J. Ohm, V. Vasudevan, and A. Yamada, “Color and
texture descriptors,” IEEE Transactions on circuits and systems for
video technology, vol. 11, no. 6, pp. 703–715, 2001.
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